Using Remote Sensing for Continental-scale Water Budget Studies

Eric F. Wood
Princeton University

Global Water Cycle Session
Satellite Observations of the Water Cycle
March 7-9, 2007

Beckman Center

A VISION FOR THE PLANETARY WATER CYCLE

IMPLEMENT A NEW EPOCH OF WATER MANAGEMENT IN OUR LIFETIMES THAT IS FACILITATED BY OBSERVATIONS AND IMPROVED PREDICTION SYSTEMS.

OBSERVATIONS

IMPROVED CAPABILITY TO ASSIMILATE AND **PREDICT**

INTEGRATED DECISION SUPPORT SYSTEMS

(Courtesy R. Lawford)

Science increases gray zone. Reduce gray zone by observations.

Advances in space observations for the Global Water Cycle

Moisture, Snow

Land surface water budget (e.g., for a river basin):

$$\overline{P} - \overline{E} = Q_s + Q_g + d\overline{S} / dt$$

For land surface models

P → observed

E, Q_s, Q_g, dS/dt → parameterized

For remote sensing retrievals (models)

 $Q_s, Q_g \rightarrow observed$

E, P, dS/dt → parameterized

S_{gi} glaciers and ice sheets

Atmospheric water budget over a region (e.g. river basin):

$$\overline{E} - \overline{P} = \overline{\nabla \cdot \overrightarrow{Q}} + \frac{\partial (W + W_c)}{\partial t}$$

where:

 $\overline{E}, \overline{P}$ = are basin-averaged evapotranspiration and precipitation (as for surface water balance)

Q = vertically integrated water vapor transport

W = vertically integrated water vapor

W_c = vertically integrated cloud liquid water

Challenges facing remote sensing

1. Issues of scale, and sub-pixel "contamination" and parameterizations.

Spatial Variability of Land Surface

Soil Moisture from Space

Soil moisture retrievals and in-situ measurements

Time series from different sources, measured at different scales behave differently; yet they are correlated and show skill in data assimilation – how to evaluate them?

In-situ (points over the region); VIC (10 km); TMI (~35 km)

ISCCP 2003-08-15 21Z

Surface insolation products for estimating ET (land heat fluxes)

Surface Energy Balance Model (SEBS) Model Approach

Basically SEBS calculates H using similarity theory, then constrains the estimates of H and λE based on wet (radiation limited) and dry (water limited) conditions.

$$u = \frac{u_*}{k} \left[\ln \left(\frac{z - d_0}{z_{0m}} \right) - \Psi_m \left(\frac{z - d_0}{L} \right) + \Psi_m \left(\frac{z_{0m}}{L} \right) \right]$$

$$L = -\frac{\rho C_p u_*^3 \theta_v}{kgH}$$

$$H = k u_* \rho C_p (\theta_0 - \theta_a) \ln \left(\frac{z - d_0}{z_{0h}} \right) - \Psi_h \left(\frac{z - d_0}{L} \right) + \Psi_h \left(\frac{z_{0h}}{L} \right) \right]^{-1}$$
Stability functions

Potential , temperature gradient

Wind, air temperature, humidity (aerodynamic roughness, thermal dynamic roughness)

Various sub-modules for calculating needed components...

The issue of spatial scale

Most land surface models use a Penman-Monteith parameterization, which doesn't use a surface temperature, but only needs 2-m air temperature and humidity, thereby making it impossible to have the spatial detail approaches like SEBS.

What parameterization should be used for continental-scale water budget studies i.e. 'climate' studies?

How to determine which is more accurate at large scales?

Challenges facing remote sensing

- 1. Issues of scale, and sub-pixel "contamination" and parameterizations
- 2. Remote sensing validation (and calibration) at largescales: a new paradigm is needed.

Soil Moisture "Valuation" via Data Assimilation

Instead of comparing remotely-sensed soil moisture to ground measurements, look for how much the soil moisture product can contribute when it is assimilated into a (simple) land surface model (LSM) driven by poor rainfall forcings (after Crow, 2007).

"R Proxies" using VIC and AIRS Ts for soil moisture retrievals

Real-time data availability for hydrology – the options

Data availability for hydrology – satellite precipitation

TRMM 3B42 merged high quality infrared precipitation product- 3hrly 0.25 x 0.25 degree gridded estimates of global precipitation [mm/hr] (instantaneous precipitation rate at the nominal observation time)

algorithm available at: http://trmm.gsfc.nasa.gov/3b42.html

Using adaptive filtering to estimate errors from <u>satellite-retrieved precipitation</u> (from Crow and Bolton, 2007)

Estimated forecast error versus CPC for a number of 1-degree boxes in the SGP (US region) (July 1, 2002 to Dec 31, 2005)

Estimated forecast error versus CPC spatially averaged for all boxes and retrievals.

Challenges facing remote sensing

- 1. Issues of scale, and sub-pixel "contamination" and parameterizations
- 2. Remote sensing validation (and calibration) at largescales: a new paradigm is needed.
- Understanding consistency among retrieved data fields – new approaches for data assimilation. Lots of activity happening.

Key issues with remote sensing of water cycle:

- How reliable are independent observations?
- Can we model/monitor water & energy fluxes through land-atmosphere-ocean systems (recycling)?
- Can we monitor/predict drought/flood risk?
- How to link observations with models scale issues?
- How to harness remote observations to make system level predictions/responses

(From McCabe and Wood, RSE, 2007)

Summary.

Through modeling and remote sensing it is possible today to carry out water budget studies – perhaps even using only remote sensing. But, we still don't know how good these estimates are, or how good we need them to be.

A final workshop proposal: as a community we should assess the <u>current state</u> of the water system, and perhaps a retrospective (~1990) assessment. This could be a GEWEX activity, perhaps with the UN's Program on Sustainable Development or the World-wide Water Assessment Programme.